The discretized discrepancy principle under general source conditions
نویسندگان
چکیده
We discuss adaptive strategies for choosing regularization parameters in TikhonovPhillips regularization of discretized linear operator equations. Two rules turn out to be entirely based on the underlying regularization scheme. Among them only the discrepancy principle allows to search for the optimal regularization parameter from the easiest problem. This possible advantage cannot be used with the standard projection scheme. We present a modified scheme, in which the discretization level varies with the successive regularization parameters, and which allows to use the advantage, mentioned before.
منابع مشابه
Further convergence results on the general iteratively regularized Gauss-Newton methods under the discrepancy principle
We consider the general iteratively regularized Gauss-Newton methods xk+1 = x0 − gαk (F (xk)F (xk))F (xk) ( F (xk)− y − F (xk)(xk − x0) ) for solving nonlinear inverse problems F (x) = y using the only available noise yδ of y satisfying ‖yδ − y‖ ≤ δ with a given small noise level δ > 0. In order to produce reasonable approximation to the sought solution, we terminate the iteration by the discre...
متن کاملOn a regularized Levenberg-Marquardt method for solving nonlinear inverse problems
We consider a regularized Levenberg–Marquardt method for solving nonlinear ill-posed inverse problems. We use the discrepancy principle to terminate the iteration. Under certain conditions, we prove the convergence of the method and obtain the order optimal convergence rates when the exact solution satisfies suitable source-wise representations. Mathematics Subject Classification (2000) 65J15 ·...
متن کاملOn Weakly Bounded Noise in Ill-Posed Problems
We study compact operator equations with noisy data in Hilbert space. Instead of assuming that the error in the data converges strongly to 0, we only assume weak convergence. Under the usual source conditions, we derive optimal convergence rates for convexly constrained Phillips-Tikhonov regularization. We also discuss a discrepancy principle and prove its asymptotic behavior. As an example, we...
متن کاملOn the discrepancy principle
A simple proof of the convergence of the variational regularization, with the regularization parameter, chosen by the discrepancy principle, is given for linear operators under suitable assumptions. It is shown that the discrepancy principle, in general, does not yield uniform with respect to the data convergence. An a priori choice of the regularization parameter is proposed and justified for ...
متن کاملImplicit iteration methods in Hilbert scales
For solving linear ill-posed problems, regularizationmethods are requiredwhen the right-hand side is with some noise. In this paper regularized solutions are obtained by implicit iteration methods in Hilbert scales. By exploiting operator monotonicity of certain functions and interpolation techniques in variable Hilbert scales, we study these methods under general smoothness conditions. Order o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- J. Complexity
دوره 22 شماره
صفحات -
تاریخ انتشار 2006